| 
鐵幣2765 元文章698 篇聲望385 枚上次登入11-3-28精華0註冊時間05-2-15UID110237
 
 | 
        
        
| 1.解方程式:ab(x^2)-(a^4 +b^4)x+(a^3)(b^3)=0 a=b=0的情況,ab(x^2)-(a^4 +b^4)x+(a^3)(b^3)=0,得0=0,此方程無解...
 a=0,b不等於0的情況,得(b^4)x=0,得x=0
 a不等於0,b=0的情況,得(a^4)x=0,得x=0,
 兩者皆不等於0的情況:
 delta=(a^4+b^4)^2-4(a^3b^3)(ab) >or= 0
 (a^4+b^4)^2-4(a^4)(b^4)>or= 0
 (a^4-2a^2b^2+b^4) (a^4+2a^2b^2+b^4)>or= 0
 (a^2-b^2)^2*(a^2+b^2)^2 >or= 0
 所以ab(x^2)-(a^4 +b^4)x+(a^3)(b^3)=0必定有實數根..
 x=[(a^4 +b^4) +or- sqrt(delta)]/2ab
 x=[(a^4 +b^4) +or- (a^4-b^4)]/2ab
 x=a^3/b or b^3/a
 所以如a=b=0的情況,此方程無解..
 a,b其中一個為0的情況,x=0
 a,b皆不等於的情況,x=a^3/b or b^3/a
 
 2.解方程
 x不等於0,1,2,3,4,5,否則會出現1/0的情況
 (3/x)+[1/(x-1)]+[4/(x-2)]+[4/(x-3)]+[1/(x-4)]+[3/(x-5)]=0
 [3/x+3/(x-5)]+[1/(x-1)+1/(x-4)]+[4/(x-2)+4/(x-3)]=0
 3(2x-5)/(x^2-5x)+(2x-5)/(x^2-5x+4)+4(2x-5)/(x^2-5x+6)=0
 Let k=x^2-5x
 (2x-5)[3/k+1/(k+4)+4/(k+6)]=0
 x=5/2 or [3/k+1/(k+4)+4/(k+6)]=0
 
 [3/k+1/(k+4)+4/(k+6)]=0
 8k^2+52k+72=0
 k=-2 or-4.5
 x^2-5x+2=0 or x^2-5x+4.5=0
 x=[5+sqrt(17)]/2 or [5-sqrt(17)]/2 or [5+sqrt(7]/2 or [5-sqrt(7)]/2
 所以x=5/2 or [5+sqrt(17)]/2 or [5-sqrt(17)]/2 or [5+sqrt(7]/2 or [5-sqrt(7)]/2
 | 
 |