鐵之狂傲
標題:
遞迴關係式
[列印本頁]
作者:
傲月光希
時間:
07-1-19 01:09
標題:
遞迴關係式
下列遞迴關係式,請將
a
n
用n表示出來
1.
a
n
=3
a
n-1
+4
a
n-2
,
a
0
=
a
1
=1
2.
a
n
=
a
n-2
,
a
0
=
a
1
=1
3.
a
n
=3
a
n-1
-3
a
n-2
+
a
n-3
,
a
0
=
a
1
=1,
a
2
=2
4.
a
n
=
a
n-1
+
a
n-2
,
a
0
=1,
a
1
=3
5.
a
n
=
a
n-1
+9
a
n-2
-9
a
n-3
,
a
0
=0,
a
1
=1,
a
2
=2
作者:
turnX
時間:
07-1-19 04:34
標題:
先算前三題
1.a
n
=3a
n-1
+4a
n-2
,a
0
=a
1
=1
a
n
=(2/5)(4^n)+(3/5)(-1)^n
2.a
n
=a
n
-2,a
0
=a
1
=1
a
n
=1
3.a
n
=3a
n-1
-3a
n-2
+a
n-3
,a
0
=a
1
=1,a
2
=2
a
n
=(1/2)*(n^2)-(1/2)*n+1
作者:
turnX
時間:
07-1-19 04:42
標題:
第4題
4.a
n
=a
n-1
+a
n-2
,a
0
=1,a
1
=3
a
n
=((1+√5)/2)^(n+1)+((1-√5)/2)^(n+1)
作者:
turnX
時間:
07-1-19 04:49
5.a
n
=a
n-1
+9a
n-2
-9a
n-3
,a
0
=0,a
1
=1,a
2
=2
a
n
=(1/3)*(3^n)+(-1/12)*((-3)^n)-(1/4)
作者:
傲月光希
時間:
07-1-19 21:36
詳述一下你的解題過程XD
作者:
turnX
時間:
07-1-19 21:52
特徵多項式解遞迴式...如果真的要我用MathType打過程的話,我再打吧!第二題應該連解都不用解
PARTI
PARTII
上面的免費空間不知道能放多久?(圖片也許無法顯示但是可以從網址去看)
[
本文最後由 turnX 於 07-1-22 07:53 PM 編輯
]
歡迎光臨 鐵之狂傲 (https://www.gamez.com.tw/)